Reanalysis of Children's Two-Word Utterances: A Minimalist Perspective

Kazuko I. HARADA

ABSTRACT

The present study attempts to show that a new picture of the early stages of development will emerge if the formal properties of Merge ('concatenation,' 'projection,' and 'recursiveness') are separately taken into consideration. In particular, the study first reanalyzes the acquisition corpora of two-word utterances by three children in Braine (1963) and demonstrate that most of the data fail to exhibit endocentricity in structure. Then it is suggested that the operation Merge should undergo the maturational process. At the earliest stage of syntactic development only one of the formal properties of Merge 'concatenation' is available to the child, and then at the later stages the other formal properties 'projection' and 'recursiveness' enter in development so that the child can form indefinitely larger and more complex structures just as the adult can do.

Key words: phrase structure acquisition, two-word utterances, Merge, concatenation, projection, recursiveness, maturation

1. Introduction

The earliest stages of language development have usually been characterized in terms of the length of utterances as the stages of 'one-word utterances,' 'two-word utterances,' and 'multiword utterances' in acquisition literature. One of the issues about the earliest stages is whether children's one-word utterances, two-word utterances, etc. reflect the structures similar to those in the adult grammar. To cite just a few contrasting proposals, Powers (2001) claims that the child grammar is similar to the adult grammar after examining children's utterances in the framework of Minimalist Program while Braine (1963) proposes that two-word utterances are characterized in terms of the notions totally different from those in the adult grammar. Radford (1990) claims that the child starts with non-adultlike lexical-thematic stage (at around the age of 20 months (±20%)) and enters the adultlike functional-nonthematic stage (at around 24 months (±20%)) in accordance with the maturational theory proposed by Borer and Wexler (1987).

Every linguistic student admits that sentences and phrases in human language (i.e. in the adult grammar) have hierarchical structures (called phrase structures). Several different claims have been proposed to account for phrase structures in generative tradition, from phrase structure rules in the standard theory (Chomsky (1965)), X' theory in the principles-and-parameters theory (Chomsky (1981)), to the operation Merge in the Minimalist Program (Chomsky (1995), see Fukui (2000) for a review of studies of phrase structure). Merge is
the fundamental operation to build up phrase structures by combining two syntactic objects to form a larger syntactic object. Merge is usually considered to be an unanalyzed operation. Fukui (2004), however, suggests that a different way of explanation for some types of aphasia should emerge if the operation Merge is decomposed into some formal properties. The formal properties of Merge are: (i) to combine two syntactic objects (‘concatenation’), (ii) to project the property of either one of the two syntactic objects combined (‘projection’), and (iii) to apply repeatedly (‘recursiveness’). Specifically Fukui proposes a hypothesis that ‘recursiveness’ (along with another property ‘projection’) should be damaged in Broca’s aphasia or agrammatism. In other words, he proposes that some type of aphasia should be caused by problems in linguistic competence not by performance factors as have been often claimed if the formal properties of Merge are separately taken into consideration. In acquisition literature also, Merge has been considered as a whole to account for phrase structure acquisition without paying attention to each of these formal properties separately.

In this study we try to show that a new picture of the early stages of development will emerge if the formal properties (i)-(iii) of Merge are separately taken into consideration. In particular, we will reanalyze the acquisition corpora of two-word utterances by three children collected by Braine (1963) and demonstrate that most of the data fail to exhibit structural endocentricity. We then suggest that the operation Merge should undergo the maturational process: At the earliest stage of syntactic development, only one of the formal properties of Merge ‘concatenation’ is on line and available to the child, then at the later stages the other formal properties of Merge ‘projection’ and ‘recursiveness’ enter in development so that the child can form indefinitely larger and more complex structures.

2. Reanalysis of two-word utterances in Braine (1963)

Braine (1963) analyzes the first word combinations produced by three children, Gregory, Andrew, and Steven. The corpora were collected from about the age of 18 months, when the child had an estimated vocabulary of 10-20 words but had not yet uttered any word combinations. Two of the children produced their first word combinations at the age of 19 months and the other one at the age of 20 months’. The corpora for his analysis consist of word combinations uttered during the first four or five months (called the ‘first phase’ by Braine), the first month being defined by Braine as the month in which the first word combination was produced. Braine states (p. 2) that ‘In each child the number of different word combinations at first increased slowly and then showed a sudden upsurge around the fifth or sixth month.’ [italics by KIH] The phenomenon is also referred to as ‘syntax spurt’ (Radford
Reanalysis of Children’s Two-Word Utterances (Kazuko I. HARADA)

(1990)). Thus, the cumulative number of Gregory’s different word combinations from the first month on is as shown in (1).

(1) 14, 24, 54, 89, 1350, 1400, 2500+, ...

\[ \text{first month} \quad \text{fifth month} \]

vocabulary spurt \quad \text{syntax spurt}

He furthermore points out that ‘In each child the upsurge in the number of different word combinations in the fifth and sixth months was accompanied by a marked increase in the structural complexity of utterances.’ The two characteristics, the sudden upsurge in the number and the marked increase in the structural complexity, will be discussed later in section 3.

Braine analyzes the word combinations in terms of the distributional properties of the words and proposes the pivot grammar\(^2\), in which children’s first word combinations consist of ‘pivots’ and X-class (later called ‘open class’). Pivots are a small number of words that occur in a fixed position (only in the first position or in the second position) and occur frequently. The X class is a class that has many members occurring freely in any position and only in one or two combinations.

The present study will reanalyze the corpora by the three children in Braine (1963) in terms of the formal characteristics of Merge. What ‘concatenation,’ one of the formal characteristics of Merge, does is to combine two syntactic objects. ‘Projection,’ another formal characteristic, forms a larger syntactic object by projecting the property of either one of the component syntactic objects. It is this projection that makes endocentric structures emerging. If the child employs the projection, the resulting combination will exhibit an endocentric structure. Specifically the study will examine if the word combinations by the three children show the endocentric property or not in the following subsections. A third characteristic, ‘recursiveness,’ ensures that Merge applies repeatedly (i.e., recursively). Hence once the child can apply Merge recursively, the complexity of his utterances increases indefinitely.

2.1. Gregory’s word combinations

Braine reports that the number of Gregory’s word combinations during the first four months is 89: 64 Pivot +X (PX) sequences, 5 X + Pivot (XP) sequences, and 20 unspecified sequences. 36 out of 89 combinations are actually illustrated in his paper, including four examples from 31 \textbf{byebye} + X combinations, three from \textbf{see} + X combinations, and five from unspecified sequences. The PX sequences are given in (2a-i). The XP and Unspecified sequences are shown respectively in (3) and (4).

(2)a. \textbf{byebye}\(^3\) plane, \textbf{byebye} man, \textbf{byebye} hot, \textbf{byebye} celery, 27 other \textbf{byebye} + X

b. \textbf{see} boy, \textbf{see} sock, \textbf{see} hot, 11 other \textbf{see} + X
c. \textbf{allgone} shoe, \textbf{allgone} vitamins, \textbf{allgone} egg, \textbf{allgone} lettuce, \textbf{allgone}
watch

d. big boss, big boat, big bus
e. my mommy, my daddy, my milk
f. pretty boat, pretty fan
g. more taxi, more melon
h. hi plane, hi mommy
i. nightnight office, nightnight boat
    PX sequences (64)

(3) do it, push it, close it, buzz it, move it
    XP sequences (5)

(4) mommy sleep, milk cup, ohmy see,
    hi howareyou, mail man, 15 other unspecified sequences
    Unspecified sequences (20)

Do the word combinations given above exhibit the endocentric structures? It is safe to say that 31 byebye + X, five allgone + X, two hi + X, and two nightnight + X, see hot, mommy sleep, ohmy see, hi howareyou, i.e. 44 word combinations in total, are not endocentric in structure. Braine refers to mail man as an English compound word, which implies that this word combination is not a syntactically endocentric structure. The combination milk cup might also be considered as a compound word, but Braine identifies it as an unspecified sequence. In either way, however, milk cup is not endocentric. With mail man and milk cup included, the number of non-endocentric sequences increases up to 46. The other sequences given in (2b), (2d-g), and (3), 17 in total, appear to be endocentric in structure. 46 out of 63 word sequences, i.e. about 73% of Gregory’s earliest word combinations, are NOT endocentric.

2.2. Andrew’s word combinations
The number of Andrew’s word combinations during the first five months is 102: 52 PX sequences, 21 XP sequences, and 29 Unspecified sequences. In Andrew’s case, all of the 102 utterances are listed in Braine’s Table 2 (p. 5). The PX, the XP, and Unspecified sequences are respectively illustrated in (5a-g), (6a-d), and (7) below.

(5a) all broke, all buttoned, all clean, all done, all dressed, all dry, all fix, all gone, all messy, all shut, all through, all wet
b. I see, I shut, I sit
c. see baby, see pretty, see train
d. other bib, other bread, other milk, other pants, other part, other piece, other pocket, other shirt, other shoe, other side
e. no bed, no down (‘Don’t put me down.’), no fix, no home, no mama (‘I don’t want to go to mama.’), no more, no pee, no plug, no water, no wet (‘I’m not wet.’)
f. more car (‘Drive around some more.’), more cereal, more cookie, more fish, more high (‘There’s more up there.’), more hot, more read, more sing, more toast, more walk
g. hi Calico, hi mama, hi papa
    PX sequences (52)

(6a) boot off, light off, pants off, shirt off, shoe off, water off
b. airplane by ('A plane is flying past.'),
siren by
c. mail come, mama come
d. clock on there, up on there, hot in
there, milk in there, light up there,
fall down there, kitty down there,
more down there, sit down there,
cover down there, other cover down
there XP sequences (21)

(7) airplane all gone, Calico all gone,
Calico all done ‘Said after the death
of Calico the cat.’, salt all shut, all
done milk, all done now, all gone
juice, all gone outside ‘said when
the door is shut: ‘The outside is all
gone.’, all gone pacifier, byebye
back, byebye Calico, byebye car,
byebye papa, Calico byebye, papa
byebye, what’s that\(^a\), what’s this,
mail man, mail car, our car, our
door, papa away, look at this,
outside more, pants change, dry
pants, off bib, down there, up on
there some more

Unspecified sequences (29)

It is easy to see that 75 word combinations
in total are non-endocentric utterances: 12
_all + X in (5a), three _I + X in (5b), one
sequence see pretty in (5c), nine _no + X
(excluding no more\(^a\)) in (5e), six sequences
_more car, more high, more hot, more read,
more sing, more walk from (5f), three _hi +
X in (5g), six _X + off in (6a), two _X + by
in (6b), two _X + come in (6c), nine X +
there\(^a\) in (6d), and twenty-two word
combinations from unspecified sequences
in (7). The sequences mail man and mail
car can be English compound words just as
Gregory’s mail man. Including these two,
the number of non-endocentric utterances
will result in 77. The remaining 27 (or 25
with mail man and mail car excluded) word
combinations appear to be endocentric in
structure. 77 out of 102 word combinations,
i.e. about 75% of Andrew’s earliest word
combinations, are NOT endocentric.

One remark is in order here. Examining
the word combinations in (7), we notice
that both the word order X + _all gone and
its reverse order _all gone + X are employed.
The same thing can be said with the
sequences X + _all done and _all done + X,
byebye + X and X + byebye, off + X and X
+ _off (the former is considered an
unspecified sequence though the latter is
classified as XP sequence by Braine and
the examples are given in (6a)). This
fact gives us another piece of evidence
that shows that Andrew in his first five
months treat two words on a par and just
concatenate the two words with no fixed
order. He cannot yet project one of the two
words to form a larger syntactic object.

2.3. Steven’s word combinations
Now turning to Steven’s word combinations
during his fourth and fifth month\(^a\), the
number of his word combinations is 82: 63
PX sequences, 3 XP sequences, and 16
unspecified sentences. Braine’s Table 3 (p.
7) also lists up all of the 82 utterances in
Steven’s case. The PX, the XP, and
Unspecified sequences are respectively
illustrated in (8a-j), (9), and (10).
(8a. want baby, want car, want do[^2],
    want get, want glasses, want head,
    want high (‘Put it up there.’), want
    horsie, want jeep, want more, want
    page, want pon (‘Put on’ or ‘up on’
    or both.), want purse, want ride,
    want up, want byebye car[^13]

b. get ball, get Betty, get doll

c. see ball, see doll, see record, see
    Stevie

d. whoa cards(‘The cards are falling.’),
    whoa jeep

e. it ball, it bang, it checker, it daddy,
    it Dennis, it doggie, it doll, it fall, it
    horsie, it Kathy, it Lucy, it record, it
    shock, it truck

f. there ball, there book, there doggie,
    there doll, there high (‘It’s up there.’),
    there momma, there record, there
    trunk, there byebye car, there daddy
    truck, there momma truck

g. that box, that Dennis, that doll, that
    Tommy, that truck

h. here bed, here checker, here doll,
    here truck,

i. more ball, more book[^14]

j. beeppeep bang (‘The car that goes
    “beeppeep” is falling.’), beeppeep
    car

    PX sequences (63)

(9) bunny do, daddy do, momma do

    XP sequences (3)

(10) bunny do sleep, Lucy do fun, want
    do pon (‘I want (you) to put (the
    jeep) on top.’), want drive car, baby
    doll, Betty pon, byebye car, Candy
    say, find bear, pon baby, pon Betty,
    sleepy bed, eat breakfast, two
    checker, Betty byebye car, Lucy
    shutup Lucy shutup Lucy

    Unspecified sequences (16)

There are again many non-endocentric
word combinations found in Steven’s
 corpus just as in Gregory’s and Andrew’s.
We can easily observe that 55 word
combinations in total are non-endocentric:
seven sequences want do, want get, want
high, want pon, want ride, want up, want
byebye car from want + X in (8a), two
whoa + X in (8d), 14 it + X in (8e), 11
there + X in (8f), five that + X in (8g)[^15],
four here + X in (8h), two beeppeep + X in
(8j), and ten word combinations from
unspecified sequences in (10). The
sequence baby doll from the unspecified
category can be an English compound
word. If our conjecture is correct, then
the number of non-endocentric utterances
will increase up to 56. The remaining 27
(or 26 with baby dall excluded) word
combinations appear to be endocentric in
structure. 56 out of 82 word sequences,
i.e. about 68% of Steven’s earliest word
combinations, are NOT endocentric.

One characteristic about Steven’s
corpora should be mentioned. Brainé
points out that Steven did not speak as
clearly as Gregory and Andrew, which led
Brainé to choose two different ways to
collect utterances. The utterances by
Gregory and Andrew were written down
by their parents at the time when they
were produced while those by Steven were
tape-recorded. Braine states (p. 6) that ‘Table 3 lists Steven’s identifiable word combinations ....’ [italics by KIH] Thus we find such words unique to Steven (not found in the other two children nor found in the adult’s speech) as pon occurring in want pon, want do pon, Betty pon, pon baby, pon Betty and whoa occurring in whoa cards, whoa jeep.

As in Andrew’s corpora in section 2.2, the free word order is also observed in Steven’s though to a lesser degree. Both X + pon and pon + X orders are found. The word do occurs as a pivot (X + do) in (9) but appears at the second position of some such utterances in (10) as bunny do sleep, Lucy do fun, want do pon. These cases suggest that what Steven does is just to combine two (or more) words but not to project the property of one of the words to form a larger structure.

3. Discussion on the corpora by the three children

The corpora by the three children reported in section 2 are summarized in Table 1 below.

In a nutshell, two thirds or three quarters of the children’s earliest word combinations are not endocentric. Comparing Gregory’s and Andrew’s corpora with Steven’s, we immediately notice a difference: The rate of the word combinations that are not endocentric is larger in Gregory’s and Andrew’s corpora (about 73-75%) than in Steven’s (about 68%). In other words, more endocentric utterances are found in Steven’s corpora than in Gregory’s and Andrew’s. This may be due to the nature of the corpora. As described in section 2.3, Steven’s utterances were not written down by his parents but tape recorded in twelve play sessions during the fourth and fifth months, i.e. only the last two months of the first phase. However, Gregory’s and Andrew’s corpora range over the entire first phase, from the first to the fourth month in Gregory’s and from the first to the fifth month in Andrew’s. Thus Steven’s corpus might reflect a more advanced stage than Gregory’s and Andrew’s. A piece of evidence that Steven is at a more advanced

<table>
<thead>
<tr>
<th>Table 1</th>
<th>The corpora by Gregory, Andrew, and Steven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age range under investigation (months)</td>
<td>Gregory</td>
</tr>
<tr>
<td>19 or 20-23 or 24</td>
<td>19 or 20-24 or 25</td>
</tr>
<tr>
<td>No. of PX sequences</td>
<td>64</td>
</tr>
<tr>
<td>No. of XP sequences</td>
<td>5</td>
</tr>
<tr>
<td>No. of Unspecified sequences</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td>89</td>
</tr>
<tr>
<td>Percentages of non-endocentric utterances</td>
<td>73%</td>
</tr>
</tbody>
</table>
stage is found in the number of three- or multi-word utterances in the corpora. No three-word utterances are found in Gregory’s corpus and only three multi-word utterances (only 2.9% of the corpus) are observed in Andrew’s corpus (salt all shut, look at this, up on there some more). In contrast, Steven’s corpus contains ten multi-word utterances (12.2% of the corpus, mostly three-word utterances), want byebye car, there byebye car, there daddy truck, there momma truck, bunny do sleep, Lucy do fun, want do pon, want drive car, Betty byebye car, Lucy shutup Lucy shutup Lucy. These multi-word utterances might contain internal structures, suggesting a possibility that Steven is in transition to a more advanced stage where projection and recursiveness are operative.

Another point to be discussed is the nature of such word combinations as mommy sleep, all broke, all messy, I sit, light off, mail come, clock on there, airplane all gone, it Kathy, it doggie, there ball, that Dennis, here bed, bunny do, Lucy do fun. As pointed out in note 5, at a first glance it seems that these combinations put on the appearance of a full sentence. Notice, however, that in the adult grammar sentences are characterized by the emergence of functional categories such as INFL or COMP. The question we should ask now is: Do the seeming child’s sentences really contain the functional categories? Hyams’ (1992) study is relevant to this point. Hyams examines a variety of cross-linguistic data ranging over Italian, French, English, German, Dutch, Sweden, and Icelandic during the early stages of language development. She concludes (p. 392) that ‘we find evidence for functional categories at a relatively early stage of development. Most of the data ... are about 2 to 2 1/2 years, ...’ That is, the emergence of functional categories is observed about 24 to 30 months, much later stages of development than those examined in the present study. In her concluding remarks, Hyams correctly points out that a great deal of individual variation is found with respect to age. Thus it is better to look at her evidence in terms of another measure MLU (=the mean length of utterances). The MLU of the data Hyams examines falls between 3.75 and 6.25. Recall that the MLU of the three children in the present study is approximately 2. The two measures age and MLU clearly show that Hyams evidence falls under a more advanced stage than the stage in this study. It is safely said that the stage Hyams deals with is the one after syntax spurt and that her evidence reflects much more complex structures, in particular, the emergence of functional categories, which leads us to conclude that the seeming sentences by the three children lack functional categories and do not exhibit the status of a full sentence.

4. Concluding remarks

The corpora under investigation consist of the first word combinations (mostly two-word utterances) by the three children
Gregory, Andrew, and Steven during their first four and five months (the first month being defined by Braine as the month in which the first word combination was uttered) provided in Braine (1963). The corpora have been reanalyzed in terms of formal characteristics of Merge, ‘concatenation,’ ‘projection,’ and ‘recursiveness.’ ‘Concatenation’ just combines two syntactic objects (words in the case of a two-word utterance) but no others, hence the resulting sequence has no internal structure. ‘Projection’ forms a larger syntactic object by projecting the property of either one of the component syntactic objects. It is this ‘projection’ that makes endocentric structures emerging. Furthermore, if Merge can apply recursively, more and more complex structures become available.

The reanalysis in the present study has demonstrated that most of two-word utterances, i.e. two thirds or three quarters of the corpora depending on the child, are NOT endocentric. The result along with the fact that free word order is observed in some utterances leads us to conclude that the child does not employ ‘projection’ (let alone ‘recursiveness’) at his earliest stage of word combination. Furthermore, Steven, one third of whose corpus exhibits endocentricity in structure, might be in transition from the stage in which only ‘concatenation’ is available to the next and more advanced stage in which ‘projection’ enters in his competence. At this point of discussion we turn our attention to the two characteristics that Braine has pointed out and we have briefly touched in the beginning of section 2; the sudden upsurge in the number and the marked increase in the structural complexity observed at the fifth and sixth months of the three children (at the beginning of ‘syntax spurt’ in Radford (1990)). This is in accord with Hyams’ (1992) finding that functional categories such as INFL and COMP emerge in the child’s grammar about 24 to 30 months. The emergence of functional categories is one of the factors that characterize complex structures. Therefore her evidence leads us to conclude that ‘projection’ and ‘recursiveness’ enter in syntactic development around 24 to 30 months.

What we have obtained in the reanalysis together with a phenomenon ‘syntax spurt’ strongly suggests two things. (i) Merge undergoes maturation. At first only ‘concatenation’ is available to the child, and at the next developmental stage ‘projection’ and ‘recursiveness’ enter in development. (ii) Two-word utterances reflect the child’s linguistic competence at his earliest syntactic development different from the adult’s. Some acquisition researchers have claimed that two-word utterances are produced because of some performance factors though the child at the stage of two-word utterances has a full competence. In short, we suggest a competence-based account for the child’s two-word utterances in opposition to a performance account.

Finally we will point out some directions to take in the future research agenda. One
direction is toward a cross-linguistic study. The present study has analyzed English corpora by three children. We need data more in variety and more in quantity to draw a firmer conclusion. Another direction to take is to examine corpora more closely. Braine (1963) analyzes his corpora by the three children by putting all the utterances before ‘syntax spurt’ all together. It has been pointed out above that Steven might be in transition to a more advanced stage of syntax spurt based on the observation that Steven’s corpora exhibit more endocentric structures than Gregory’s and Steven’s. This might reflect the nature of the corpora under investigation. Recall that Steven’s corpora consist of the utterances recorded during the fourth and fifth months, the last two months of the first phase while Gregory’s and Andrew’s corpora include the utterances from the first to fourth or five months. The examination of the utterances from the last two months of the first phase of Gregory and Andrew might exhibit the same tendency as Steven’s. Closer look at the utterances month by month will bring us a stronger support for our maturational view of phrase structure acquisition.

† This is an expanded version of a part of the talk presented at Workshop on Evolution and Syntax (sponsored by International Institute for Advanced Studies) on September 8, 2004. I first of all would like to express my deepest gratitude to Osamu Fujimura, the organizer of the workshop, and the participants there for their lively discussion and valuable comments. I am also grateful to Naoki Fukui for his stimulating talk at Sophia University International Symposium on Linguistics and Speech Pathology on July 25, 2004. Without his talk, this study would never have been materialized. The research was supported by Scientific Grant-in-Aid (C) by the Ministry of Education, Science, Sports and Culture (Grant No. 14510634-3001).

Notes

1 It is interesting to note that the phenomenon called ‘vocabulary spurt’ starts around the age of 20 months (see Radford (1990)). Radford states (p. 274) that ‘a number of studies ... have reported that the rate of acquisition of vocabulary items undergoes a sudden rapid increase at around the age of 20 months.’

2 For a critical review of the pivot grammar, see Brown (1973).

3 The bold typed words in the examples stand for pivots.

4 The word sequences without no word boundary such as ohmy and houareyou show that these are unanalyzed wholes to Gregory.

5 The combination mommy sleep appears to be a full sentence, and hence it might be endocentric. These seeming sentences will be discussed later in section 3.

6 A paraphrase of the child word combination recorded by the parents is given in parentheses.

7 Braine considers there in (6d) to be a pivot and states (p. 6) that a word combination in (6d) is ‘a phrase which itself has internal positional structure (there, preceded by down, in, on, or up)’. There might be another possibility that onthere, inthere, and downthere are unanalyzed wholes because almost all the utterances Andrew produced at this stage are two-word utterances.
Klima and Bellugi (1966) examined the naturalistic speech by three preschool
children (Adam, Eve, Sarah) and reported the developmental stages of *wh*-questions: Period 1 (the average age range: 2:0-2:4), Period 2 (the average age range: 2:4-2:7), and Period 3 (the average age range: 2:7-2:10). Period 1 is characterized by the use of routines such as *what's that?* and *what's this?*. Although Braine does not state the exact age range of Andrew under investigation, we can safely estimate his age range from 19 or 20 months to 24 or 25 months, which leads us to conclude that Andrew falls in Pre-Period 1 in Klima and Bellugi’s terms. Thus Andrew’s sequences *what's that* and *what's this* are better analyzed as routines, i.e. single-word like utterances.

The word combination *no more* might be a non-endocentric utterance.

Most of the utterances in (6d) are three-word utterances and one of them is a four-word utterance. Thus X stands for not a single word but the rest of the utterance without the pivot.

Braine states (p. 6) in the text that ‘Table 3 lists Steven’s identifiable word combinations, recorded in twelve play sessions during the *fourth and fifth* months.’ [italics by KIH] However, the title of Table 3 is ‘Steven’s word combinations, tape-recorded sample at end of *fourth* month.’ [italics by KIH] I conjecture that the statement in the text is correct and the title of Table 3 has a typographical error, that is, ‘the fourth month’ in the title should be ‘the fifth month.’

Braine considers the sequence *want do* a pivotal construction with *want* as a pivot but he somehow hesitates to put it under the *want + X* construction. He suggests another possibility that *want do* falls under the *X + do* construction. We put it under the *want + X* construction following Braine’s decision.

This utterance is considered to be a non-endocentric sequence because it is hard to interpret the sequence without a paraphrase by the parents (note that there is no paraphrase with this particular utterance). If it were an endocentric sequence, i.e. a structure formed by projecting the property of one of the three component words (*want, byebye, and car*), we would have no difficulty to interpret it.

These two utterances might be non-endocentric depending on their interpretations. We are not sure of their interpretations without paraphrases by the parents. Hence we tentatively classify them into endocentric sequences.

Among the *that + X* in (8g), *that box, that doll, that truck* appear to constitute noun phrases and hence they might be endocentric in structure. However, in Braine (1963) they are listed along with *that Dennis* and *that Tommy*. The latter two combinations are most likely to be interpreted as ‘that is Dennis’ and ‘that is Tommy’ respectively. Our guess is that the former three have similar interpretations though we are not sure of it because Braine does not put a paraphrase to these *that + X* combinations. If our guess is correct, the *that + X* sequences will be classified as non-endocentric.

Braine (1963) does not specify the exact age range of the three children under investigation. The age ranges given in Table 1 is inferred from what Braine has described in the text.

Notice that 11 X + *there* sequences are analyzed as two-word utterances in this study as pointed out in note 7 though Braine considers them three-word utterances.

References


Braine, Martin D. S. 1963. The ontogeny of
English phrase structure: The first phase. 


Fukui, Naoki. 2004. Seisei bunpoo to gengo syoogaigaku (Generative grammar and speech pathology). In *Gengogaku to gengo syoogaigaku to no setten* (Linguistics and speech pathology), 37-38.


